yuns
6.2 Tree LSTM 본문
반응형
LSTMs are used in a similar way as GRU through the propagation process based on a tree or a graph.
- Two extensions to the basic LSTM architecture
- The Child-Sum Tree-LSTM
- N-ary Tree-LSTM
- Each Tree-LSTM unit contains input and output gates iv and ov, a memory cell cv, and hidden state hv
- The Tree-LSTM unit abandons the single forget gate but uses a forget gate fvk for each child k, allowing node v to aggregate information from its child accordingly.
- The equations of Child-Sum Tree-LSTM ˜ht−1v=∑k∈Nvht−1k itv=σ(Wixtv+Ui˜ht−1v+bi) ftvk=σ(Wfxtv+Uf˜ht−1k+bf) otv=σ(Xoxtv+Uo˜ht−1v+bu utv=tanh(Wuxtv+Uu˜ht−1v+bu) ctv=itv⊙utv+∑k∈Nvftvk⊙ct−1k htv=otv⊙tanh(ctv)
- Tree구조에서 각 노드의 자식 수가 최대 K개이고 자식을 1-K까지 정렬할 수 있을 경우에는 N-ary Tree-LSTM을 적용할 수 있음
- The Transition equation itv=σ(Wixtv+K∑l=1Uilht−1vl+bi) ftvk=σ(Wfxtv+K∑l=1Uflht−1vl+bf) otv=σ(Xoxtv+K∑l=1Uolht−1vl+bu utv=tanh(Wuxtv+K∑l=1Uulht−1vl+bu) ctv=itv⊙utv+∑l∈Nvftvl⊙ct−1k htv=otv⊙tanh(ctv)
Child-Sum Tree-LSTM와 비교해서 N-ary Tree-LSTM은 separate parameter matrices for each child k, which allows the model to learn more fine-grained representations for each node conditioned on the it's children.
반응형
'graph deep learning > #6 Graph Recurrent Networks' 카테고리의 다른 글
6.4 Sentence LSTM (0) | 2020.11.22 |
---|---|
6.3 Graph LSTM (0) | 2020.11.22 |
6.1 Gated Graph Neural Networks (0) | 2020.11.20 |