yuns

6.2 Tree LSTM 본문

graph deep learning/#6 Graph Recurrent Networks

6.2 Tree LSTM

yuuuun 2020. 11. 20. 17:30
반응형

LSTMs are used in a similar way as GRU through the propagation process based on a tree or a graph.

  • Two extensions to the basic LSTM architecture
    • The Child-Sum Tree-LSTM
    • N-ary Tree-LSTM
  • Each Tree-LSTM unit contains input and output gates iv and ov, a memory cell cv, and hidden state hv
  • The Tree-LSTM unit abandons the single forget gate but uses a forget gate fvk for each child k, allowing node v to aggregate information from its child accordingly.
  • The equations of Child-Sum Tree-LSTM ˜ht1v=kNvht1k itv=σ(Wixtv+Ui˜ht1v+bi) ftvk=σ(Wfxtv+Uf˜ht1k+bf) otv=σ(Xoxtv+Uo˜ht1v+bu utv=tanh(Wuxtv+Uu˜ht1v+bu) ctv=itvutv+kNvftvkct1k htv=otvtanh(ctv)
  • Tree구조에서 각 노드의 자식 수가 최대 K개이고 자식을 1-K까지 정렬할 수 있을 경우에는 N-ary Tree-LSTM을 적용할 수 있음 
    • The Transition equation itv=σ(Wixtv+Kl=1Uilht1vl+bi) ftvk=σ(Wfxtv+Kl=1Uflht1vl+bf) otv=σ(Xoxtv+Kl=1Uolht1vl+bu utv=tanh(Wuxtv+Kl=1Uulht1vl+bu) ctv=itvutv+lNvftvlct1k htv=otvtanh(ctv)

Child-Sum Tree-LSTM와 비교해서 N-ary Tree-LSTM은 separate parameter matrices for each child k, which allows the model to learn more fine-grained representations for each node conditioned on the it's children.

반응형

'graph deep learning > #6 Graph Recurrent Networks' 카테고리의 다른 글

6.4 Sentence LSTM  (0) 2020.11.22
6.3 Graph LSTM  (0) 2020.11.22
6.1 Gated Graph Neural Networks  (0) 2020.11.20
Comments