yuns
2.2 Probability Theory 본문
반응형
2.2.1 Basic Concepts and Formulas
- Random variable
- a variable that has a random value.
- X로부터 x1x1와 x2x2의 두 변수가 나올 수 있게 될 경우 아래의 식이 성립한다. P(X=x1)+P(X=x2)=1P(X=x1)+P(X=x2)=1]
- Joint probability
- 두 개의 random variable X, Y에서 각각 x1x1와 y1y1가 뽑힐 확률 P(X=x1,Y=y1)P(X=x1,Y=y1)
- Conditional Probability
- Y=y1Y=y1가 뽑혔을 때 X=x1X=x1가 같이 뽑힐 확률
- P(X=x1|Y=y1)P(X=x1|Y=y1)
- fundamental rules
- sum rule: P(X=x)=∑yP(X=x,Y=y)P(X=x)=∑yP(X=x,Y=y)
- product rule: P(X=x,Y=y)=P(Y=y|X=x)P(X=x)P(X=x,Y=y)=P(Y=y|X=x)P(X=x)
- Bayes formula P(Y=y|X=x)=P(X=x,Y=y)P(X=x)=P(X=x|Y=y)P(Y=y)P(X=x)P(Y=y|X=x)=P(X=x,Y=y)P(X=x)=P(X=x|Y=y)P(Y=y)P(X=x) P(Xi=xi|Y=y)=P(Y=y|Xi=xi)P(Xi=xi)=sumnj=1P(Y=y|Xj=xj)P(Xj=xj)P(Xi=xi|Y=y)=P(Y=y|Xi=xi)P(Xi=xi)=sumnj=1P(Y=y|Xj=xj)P(Xj=xj)
- Chain Rule P(X1=x1,⋯,Xn=xn)=P(X1=x1)n∏i=1P(Xi=xi|X1=x1,⋯,Xi−1=xi−1)P(X1=x1,⋯,Xn=xn)=P(X1=x1)n∏i=1P(Xi=xi|X1=x1,⋯,Xi−1=xi−1)
- Expectation of f(x)f(x) : E[f(x)]=∑xP(x)f(x)
- Variance of f(x): Var(f(x))=E[(f(x)−E[f(x)])2]=E[f(x)2]−E[f(x)]2
- Standard deviation
- the square root of variance
2.2.2 Probability Distributions
the probability of a random variable or several random variables on every state.
- Examples of distributions
- Gaussian distribution
- Bernoulli distribution
- Binomial distribution
- Laplace distribution
반응형
'graph deep learning > #2 Basics of Math and Graph' 카테고리의 다른 글
2.1 Linear Algebra (0) | 2020.11.03 |
---|
Comments